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By sequentially adding line segments to a line or disks to a surface at random 
positions without overlaps, we obtain configurations of the one- and two-dimen- 
sional random sequential adsorption (RSA) problem. We have simulated the 
one- and two-dimensional problem with periodic boundary condition. The one- 
dimensional simulations are compared with the exact analytical solutions to 
give an estimate of the accuracy of the simulation. In two dimensions the 
geometrical properties of the RSA configuration are discussed and in addition 
known results of the RSA process are reproduced. Various statistical dis- 
tributions of the Voronoi-Dirichlet (VD) network corresponding to the RSA 
disk configuration are analyzed. In order to characterize pores in the RSA con- 
figuration, we introduce circular holes. There is a direct correspondence between 
vertices of the VD network and these holes, and also between direct/indirect 
geometrical neighbors and these holes. The hole size distribution is found to be 
a parabola. We also find general relations that connect the asymptotic behavior 
of the surface coverage, the correlation function, and the hole size distribution. 

KEY WORDS: Random sequential adsorption; random disk packing; 
correlations; pore size distribution; Voronoi-Dirichlet network. 

1. I N T R O D U C T I O N  

A n u m b e r  of problems arising in chemistry, biology, and  physics involve 

processes that occur sequential ly and  which are essentially irreversible over 
typical observat ion  times. The r a n d o m  sequential  adsorp t ion  (RSA) model  

is a r andom packing model  which has at tracted a lot of a t ten t ion  because 
of its many  appl icat ions to such problems. The model  has been used to 
describe oxidat ion of polymers,  (1) particles in a biological membrane ,  (2~ 
spatial pat terns in ecological systems (3) and  adsorpt ion  of proteins on solid 
surfaces. (4~ The RSA model  was also in t roduced to describe the geometry of 
the fluid phase of a hard sphere system. But as W i dom (5) pointed out, the 
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RSA configuration and the configuration characteristic of a hard sphere 
system in thermodynamic equilibrium at the same density, are fundamen- 
tally different. 

In spite of the importance of getting a good geometrical description of 
the RSA configuration, most of the work done on the two-dimensional 
RSA problem have been dealing with the problem of finding the value of 
the surface coverage 02 (the fraction of area covered by disks) at the jam- 
ming limit. Very little has been done on characterizing the geometrical 
properties of the RSA configuration. The geometrical aspect of the problem 
is difficult, as may be appreciated when the complicated shape and 
topology of the area not occupied by disks are considered. Good descrip- 
tions of the geometrical properties of random disk packings are needed in 
comparing various models with experiments. Also, as a result of the recent 
interest in porous and other random media, better concepts for describing 
random geometries are needed. In porous media the problem of giving 
precise definition of pore sizes, shapes, and their connectivity properties is 
related to the problem of how geometrical properties influence the trans- 
port properties of fluid in the pores. 

The basic model of random sequential adsorption in D dimensions is 

�9 The objects are placed at random in a D-dimensional volume (sur- 
face in two dimensions) in a sequential order. 

�9 If the last placed object overlaps any other objects, it is removed 
at once. 

�9 Once an object has been placed, its position is permanently fixed. 
�9 When no more objects can be placed without overlapping those 

already present, the jamming limit has been reached and the 
process stops. 

The objects adsorbed are normally hyperspheres or hypercubes, but 
can in principle be of any geometrical shape. Because of the perfect 
memory of the RSA process, it is extremely non-Markovian, even though 
each step is completely random. As a result, the RSA configuration has 
some very interesting and unusual geometrical features. 

If the objects adsorbed are spheres with equal diameter d, the radial 
distribution function G(r) has a logarithmic divergence at contact in any 
dimension D (6 8) 

G(r) ~ ln(r - d) (1) 

Also, the asymptotic behavior of the coverage 0 D in D dimensions for the 
RSA process of equal spheres is  (6-8) 

OD(BO) -- OD(Z) ~ Z -- 1/D (2) 
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instead of a ~-1 dependence that one naively would have expected. (6) Here 
is a time parameter proportional to the number of attempts made to 

place disks. 
The one-dimensional case, also known as the parking problem, is 

exactly solvable. (1"s'9 1~) The limiting coverage at saturation is 0~(oo)= 
0.747597.... (12) In two (and higher) dimensions there are two obvious 
generalizations of the one-dimensional case, the adsorption of aligned 
squares, or the adsorption of disks (hyperspheres) onto a surface (volume). 
The placing of aligned squares and disks on a surface give different results 
for the coverage. (6J3'14) Also the saturation of 02(~ ) and the singularity of 
G(r) are different3 s) The coverage for aligned two-dimensional squares is 
found to be 0(oo)= 0.563 + 0.002, (6) while the coverage of two-dimensional 
disks is found to be 02(oo)= 0.5473 _+ 0.0009 by Tanemura (15~ and 02(oo )= 
0.547 +0.002 by Feder. (6) These values for the surface coverage and the 
asymptotic behavior of G(r) and 0~(~) in eqs. (1) and (2) are the only 
geometrical results known for the two-dimensional RSA problem. 

In this paper we report results obtained by simulating the RSA of 
disks in two dimensions. All known properties of the RSA problem are 
verified. In addition we discuss the geometrical properties in great detail. 
We discuss various statistical distributions of the Voronoi-Dirichlet (VD) 
network of the RSA configuration. Bernal and Finney (16 ~8~ have long 
advocated that the statistical properties of the VD polygons should be the 
cornerstone in a description of statistical geometry. 

In order to characterize the pores in the RSA configuration, we 
introduce circular holes. We find a direct correspondence between these 
holes and the vertices of the VD polygons. The notions of stable and 
unstable holes correspond to direct and indirect geometrical neighbors. The 
hole size distribution P(d~,) at jamming--where dh is a hole diameter--is 
found to be described by a parabola. At the cutoff value, where the hole 
diameter dh equals the disk diameter d, P(dh = d) has approximately the 
same value in one and two dimensions. We show that the asymptotic form 
of the correlation function and the coverage can be written as 

and 

G(r)= ( D + I ) T D  1 ( d )  
D2O_ ~ Oo(oo~)P(dh=d)ln - 1  + . , .  (3) 

OD(oo ) - OD(z) = ~ KD OD( oo ) P(d h = d) ~ - tip + . . .  (4) 

Here T D is a topological number defined as the number of vertices per cell 
in a D-dimensional random VD network. KD is a geometrical constant. In 
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one dimension K1 = 1. On the basis of our two-dimensional simulations we 
find also that K 2 = 1. This may be the case for general D. Relation (3) and 
(4) give connections between the surface saturation, the correlation 
function, and the hole size distribution function. 

This paper is organized as follows: In Section2 we describe the 
simulations of the one-dimensional problem. These results are compared 
with the exact analytical results to test our algorithm and calculation 
accuracy. In Section 3 we discuss our implementation of the two-dimen- 
sional RSA algorithm and present our results for the coverage at the jam- 
ming limit where there is no hole big enough for placing another disk on 
the surface. We also discuss the time-dependent saturation of the coverage 
implied by this algorithm. In Section 4 we define holes or pores for such 
configurations, and introduce the size distribution of these holes. The two- 
particle correlation function and its logarithmic divergence at contact is 
discussed in Section 5. Finally, in Section 6 we present some statistical 
results for the Voronoi-Dirichlet polygons of these configurations. A short 
summary is given in Section 7. 

2. THE O N E - D I M E N S I O N A L  RSA PROBLEM 

The main purpose of this paper is to study the two-dimensional RSA 
problem of placing disks on a surface using an algorithm of Feder. (6) 
Because of the logarithmic divergence of the correlation function at contact 
one needs to be careful in order to obtain accurate results. Small differences 
in the algorithms used lead to different estimates of the limiting coverage. 
Finegold and Donnell (2) used a fine-mesh method where the target area is 
divided into 1024 x 1024 small squares. A disk placed on the surface is cen- 
tered on a small square and the disk is represented by the minimum set of 
small squares which completely covers its area. In their simulations they 
used disks with diameter 27.5 times the side of a square and the difference 
between the surface of a disk and the array of squares representing a disk 
was less than 1.5%. In spite of this small error, their results are 
approximately 10% below the results obtained by Tanemura (15) and 
Feder. (6~ Tory, Jodrey, and Pickard (14) have investigated the sensitivity of 
the results to the approximation made in this fine-mesh method. 

Several pseudo random number generators are known to result in 
statistical dependencies that are very difficult to control. In addition, the 
computer rounding errors create a situation where the results may depend 
on the details of the algorithm used. It is therefore useful to repeat previous 
simulations on different computers (here we use a ND-500, whereas our 
first two-dimensional simulations (6) were made using a VAX-780 system). 
The random number generator in these simulations is a Fortran version of 
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the IBM assembler routine RNDM2 in CERN's program library. The 
generator is a combined multiplicative congruential generator and a shift 
register generator designed to give a cycle of approximately 5.1028 num- 
bers and with nearly optimal lattice structure in two to five dimensions. 
The one-dimensional RSA problem, because of the analytical results 
available, provides a good test for the adequacy of the random number 
generator used. 

In one dimension the time-dependent coverage 01(~) is (~) 

O ~ ( z ) = f ~ d u e x p [ _ 2 f " o d v ! ( l _ e  v)] (5) 

r is time given in units of L/d2 where 2 is the rate at which attempts are 
made to place line segments of length d on a line of length L. When r ~ o% 
O~(z) has the following asymptotic behavior 

e 27 

Ox(z)= O~(oo ) - - - +  "" (6) "c 

where ? = 0.5772... is the Euler's constant. 0~ (oo) is the coverage at the jam- 
ming limit; 01(~)  = 0.747597 .... 

A hole in a configuration is the space between two adjacent line 
segments. The probability density function p(x) for finding holes with size 
between x and x + dx at jamming was shown by Mackenzie (1~ to be 

p(x)=01(oo)  d duue exp - 2  dv (1 e -v) (7) 

This distribution diverges as x--+ 0 

2 1 x 
p ( x ) -  O~(oo)de->r "" (8) 

The reason for this divergence is explained in Appendix A. When x = d the 
distribution has the value 

p(x = d) 1 1 = d -  1 = - e  -2~ .0.4217... (9) 
01(OO) d 

In our one-dimensional simulations we used a relative line length d/L = 
2'  10-4. To generate each configurtion we made 108 attempts at placing line 
segments on a line with periodic boundary conditions. This took 
approximately 1 CPU hour on our ND-500 computer. We made 18 
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independent runs, and alter 108 attempts most of our configurations were 
jammed. The time-dependent coverage averaged over these 18 runs is plot- 
ted in Fig. 1, where we also have plotted the deviation between the 
simulated points and the theoretical value obtained from eq. (5). The 
agreement is within our statistical errors. Our result for the coverage at the 
jamming limit is 01(c~)=0.7477+0.0023, in agreement with the exact 
result. 

To test the asymptotic behavior of the line saturation we have plotted 
01(z) versus 1/~ in Fig. 2. In the same figure we have also plotted the exact 
asymptote given by eq. (6); 0~,(z)= 0 1 ( ~ ) -  e-2Y/z. The convergence to the 
asymptotic behavior is slow. We find the same slow convergence in our 
two-dimensional simulations. A least-squares fit of the data points in Fig. 2 
for z ~ in the interval (0, 0.2) (or 5 < z < m) gave 01(z)--= 0.7477- 0.3136/~ 
with a standard deviation of 4" 10 6 per point. The exact asymptote in 
Fig. 2 is 0~(z)---0.7476-0.3152/z. Observe that 0~,(z) can be written as 

Oas(T ) = 01(00  ) - -  d 01(oo  ) p ( x  = d )  1/'[ ( 1 0 )  

Such an expression appear to be valid in two (and higher) dimensions. 

.B 

.B 

.2 

0.0 

.00t0 

.0005 

0.0000 

-.0005 

-.0010 

-.0015 

f 1 f 1 I-- 

f 

i 

7 . . . . .  .? 
k:  " ,M-* 

0 5 10 t5 20 25 

Fig. 1. The t op  figure is the coverage as a function of time r averaged over 18 independent 
runs. The lower figure shows the deviation of the simulated points from the theoretical values. 
The error bar, shown for comparison, is 1 s.d. obtained at the j amming  limit for the 18 runs. 
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The asymptotic behavior of the coverage 01(T ). The straight line is the exact 
asymptote. 

Next consider the hole distribution. In Fig. 3 we have plotted the 
simulated hole distribution and the theoretical hole distribution p(x) given 
in eq. (7). The agreement is seen to be good. To test the asymptotic 
behavior, we also show our simulated points plotted versus In x for 
x/d< 0.2 together with the asymptotic result in eq. (8). We have reasonable 
agreement even though we have bad statistics for really small x. A fit of the 

Fig. 3. 
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The main figure is the simulated and exact hole distribution p(x). The insert is the 
asymptotic behavior for small x. The straight line is the exact asymptote. 
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simulated points to a straight line for ln x / d < - 1 . 6  gives p ( x ) =  
0.85d l l n x + " - ,  whereas the exact result of eq.(8)  gives p ( x ) =  
0.8433d -1 In x + ... .  

A general definition of the radial distribution function G(d+x)  is 
given in Sect. 5, but for the one-dimensional case we have 

~G(d + x)2 dx = Probability of finding the center of a 
line segment in dx a distance (d + x) from 
a given line segment centered at the origin 

Here ~ = O l ( ~ ) / d  is the number  density of line segments. With this 
definition G(d+ x) is normalized so that G(d+ x ) ~  1 when x ~ ~ .  Since 
we have one hole on each side of a given line segment this probability must 
equal 2p(x) dx for x < d, and therefore we find that 

1 d 
G ( d + x ) = = p ( x ) - -  p(x), x < d  (11) 

n 01(Q(3 ) 

Using eq. (8) we find for small x 

2 x 
G ( d + x ) -  Ol(ct))2 e 2 ~ ' l n ~ - + - . . . = - 1 . 1 2 8 1 n d +  ... (12) 

We conclude that our simulations give accurate results in the one- 
dimensional case, and that the random number  generator used is adequate 
for this type of simulations. 

3. THE T W O - D I M E N S I O N A L  RSA C O N F I G U R A T I O N  

In our simulations of the two-dimensional RSA problem of placing 
disks on a surface we do not make any other approximations than the 
unavoidable round-off error in the computer. It  is too inefficient to search 
the whole array of earlier placed disks checking for overlap each time a 
new at tempt of placing a disk on the surface is made. Instead we divide the 
unit square into a grid of small cells. The diagonal of a cell is chosen to be 
slightly less than the diameter of a disk. With this size of a cell, there is at 
most one disk center in each cell. We test for overlap by searching through 
the neighboring cells to see if they are occupied or not. If  some of them are 
occupied, we calculate the distance between the disk centers to check for 
overlap. 

We have made 35 independent simulations of placing disks with 
relative area a = 2 - 1 0  4 on a unit square with periodic boundary con- 
ditions. Each configuration took approximately 3 C P U  hours on our 
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ND-500 computer. To generate each disk configuration we made 10 ~ 
attempts of placing disks on the unit square. At this stage we identified the 
holes that are large enough to contain disks. By placing disks at random in 
these holes we obtained the completely j ammed configuration. A typical 
configuration is shown in Fig. 4. In Section 4 we explain how we identify 
holes that can contain a disk. The average coverage of these j ammed con- 
figurations is 02(0o)=0.547+0.003,  corresponding to 2734_+ 13 disks on 
the surface. This is in agreement with Tanemura  (ts) and Feder. (~) 

To test how sensitive this result is to the relative disk area used, we 
repeated the simulation for various disk areas. The result is summarized in 
Table I. We see that the average is insensitive to the disk size but that the 
fluctuations increase with increasing disk size. The total average of all 115 
configurations in the last column gives 0~(o~)= 0.5471 _+ 0.0051. 

The theoretical result for asymptotic dynamics of the adsorption 
process (see appendix A) (7's~ is 

0 2 ( 0 0  ) - -  0 2 ( . ~ )  ~ + - -1 /2  

where ~ is time. A time unit is defined as ~/a trials of placing disks with 
area a on the unit square. To make a test of this result we show in Fig. 5 a 

�9 �9 OOau~l �9 �9 

: ~ I ~ . - ;  . K .~  . ' . ' ~ . . ~  . .  - . . .  

�9 �9 o�9 - - -  6~,ooo �9 ~Oo 

Fig. 4. The figure shows an RSA configuration at the jamming limit. The central square is 
magnified in Fig. 14. 
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Table  I. The Resul t  o f  the  R S A  
S i m u l a t i o n  f o r  D i f f e r e n t  Va lues  

of  the  Re la t i ve  Disk Area  a. a 

a Coverage 

0.01 0.547 • 0.2 
0,008 0.546 • 0.02 
0,006 0,550 • 0.02 
0,004 0,549 • 0,009 
0.002 0.550 • 0.006 
0.001 0.549 • 0.007 
0.0008 0.547 • 0.006 
0.0006 0.547 • 0.004 
0.0004 0.547 __+ 0.004 
0.0002 0.547 • 0.003 

a F o r  each value of a we made 20 
independent configurations, except 
for a = 0.0002 where we made 35. 

plot of the coverage averaged over the 35 configurations 2 with a = 2' 10-4 
versus 1/~/~. A straight line is a good approximation to the results of the 
simulations. 

A least-squares-fit of the curve in Fig. 5 to a straight line for 0.0 < 
1/x/~ < 0.15 give 

02(~ ) = (0.546 + 0.002)-  (0.236 + 0.007) - 1 / ~  (14) 

2 All results discussed from here on are based on these 35 configurations. 
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Fig. 5. The upper curve is the l / , f ~  behavior of the simulated surface coverage Oz(z). The 

lower curve is a straight line resulting from a least-squares-fit of the data for 1/x//~ < 0.15. 
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with an average rms deviation of 0.0004 per point. From this we get an 
extrapolated value of the coverage at v = oo, 02(oo)=0.546 ___0.002. This is 
within the uncertainty of the value obtained above. 

In Fig. 5 we see the same slow convergence as in the one-dimensional 
case in Fig. 2, but now in units of 1/x ~ instead of 1/v. In these units of 
time the approach toward the asymptotic limit is approximately the same. 

In the next section we introduce the concept of circular holes and 
define the hole-size distribution function P(dh)-- the analog of the one- 
dimensional function p(x) in eq. (7). At the cutoff value where the hole 
diameter dh equals the disk diameter d, we find P(d h = d ) =  0.432 + 0.02. 
Noticing that 02(oe).P(d~=d)=0.236+O.O1, we see from eq.(14) that 
within our numerical error we can write 

02(oo)- 02(r)= 02(oo) P(d~ = d)" 1/x/~ + "" (15) 

In Appendix A we show that the surface saturates as 

, --ffKDOD( c ~ ) p ( d h = d ) ' r - ' / D +  ... (16) 

The topological number TD is explained in Appendix B. It is defined as the 
number of vertices per cell in a D-dimensional VD network. T~ = 1, T2 = 2, 
and T3 ~ 6. KD is a geometrical constant we have not been able to evaluate 
except for one dimension where Kl = 1. Comparing eqs. (15) and (16) 
seems to suggest also that K2 = 1. It is then tempting to speculate that this 
is generally the case. 

We finish this section with a few comments on the geometrical proper- 
ties of the RSA configuration. Consider the RSA configuration in Fig. 4. 
Most observers tend to see texture, clusters, strings, and structures, and 
most tend to insist that the packing is not completely jammed. The quan- 
titative measures easily generated for random packing geometries are den- 
sity, specific surface, and the statistical distributions of local properties. 
These properties are not easily appreciated by just looking at the figure. In 
fact the eye seems to see structure on a different scale involving correlations 
of many particles. If we increase the disk radius slightly in a configuration 
like that in Fig. 4, we can define a cluster as a set of overlapping disks. For 
an increase of radius by 20 % the biggest cluster will percolate through the 
sample and look like Fig. 6. The cluster connectivity depend of course on 
the increase of radius. For  the RSA configuration the percolating cluster 
will show up for the first time when the radius is increased by nearly 20 %, 
an unexpected high value. The cluster size as a function of disk radius, their 
scaling properties, and so on represent a percolation problem useful in 
characterizing a random geometry like that in Fig. 4. We may also ask the 
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�9 v ~ r ~ w  

Fig. 6. The percolating cluster of disks generated by increasing the disk radii in Fig, 4 
by 20 %. 

same questions about the void between the disks. In two dimensions the 
void stops percolating when the disks starts to percolate. We pursue these 
aspects of the RSA configurations in a later paper. 

4. PORES OR HOLES IN THE J A M M E D  C O N F I G U R A T I O N  

In porous media and other random structures the pore-size dis- 
tribution plays a central role and is used in models for the transport 
properties. It is not possible, however, to give an unambiguous general 
definition of what we mean by a pore. We chose to characterize pores 
through the definition of circular holes. A hole in a configuration of disks is 
defined by the following procedure: For  any three disks under con- 
sideration we find the diameter dh and the center of the circle that just 
touches these three disks. If this circle does not overlap any disk it is a hole. 
Note that by this definition, holes may over lap--and several overlapping 
holes combine to cover the intuitive pore. 

Nonoverlapping holes can be defined in this way: By starting with a 
configuration of overlapping holes, we eliminate the holes overlapping the 
largest hole. Then we delete all holes overlapping the next largest hole of 
the remaining ones, and so on. 

As explained in Appendix B, there are exactly two overlapping holes 
per disk. We therefore introduce the normalized probability density per 
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pair of disks of tiding overlapping (nonoverlapping) holes with a diameter 
in an infinitesimal interval around dh, which is plotted in Figs. 7 and 8. The 
lower cutoff value is given by the smallest hole that can be defined by three 
disks with three points in contact; do/d= (sin n/3)-~ = 0.155; see Fig. 9. The 
upper cutoff is due to the definition of the jamming limit. If the hole 

2 . 0  I I I I 
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Fig. 7. The top figure shows the overlapping holes for the configuration in Fig. 4. (The cen- 
tral square is magnified in Fig. 14.) The lower figure is the size distribution of overlapping 
holes at the jamming limit for the RSA configuration: d h is the hole diameter and d is the disk 
diameter. The solid curve is a fitted parabola, 
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diameter dh is bigger than the disk diameter d, then the jammed con- 
figuration is not reached. This was in fact the situation after 10 8 trials. On 
the average we found nine holes bigger than a disk in or simulations, and 
about 10% of our replicas had overlap between two of these holes at this 
stage in the simulations. By locating these holes and placing disks into 
them, we reached the jamming limit described in Section 3. The hole-size 
distribution contains information about the local disk configuration. 
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Fig. 8. The top figure shows the nonoverlapping holes generated from the overlapping holes 
in Fig. 7. The bottom figure is the size distribution of the nonoverlapping holes of the RSA 
configuration at the jamming limit. 
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Fig. 9. The smallest hole is defined by three disks with three points in contact: do~d= 
(sin ~z/3) -1 - 1 =0.155. 

The distribution of the overlapping holes is well-described by the 
parabola 

P ( d h / d )  = ( b ~ / d 2 ) ( d h  - d o ) ( b 2  - d~)  (17) 

where b1= 8.08 _+ 0.05 and bz/d= 1.063_+0.003, as shown in Fig. 7. We 
have not yet found a good theoretical explanation for this result. The 
limiting value for dh = d  is P(1)=0.432_+ 0.02. This value is close to the 
one-dimensional value 0.4217 obtained in eq. (9), and one might speculate 
that these limiting values are the same. 

The average number of overlapping holes in the RSA configuration is 
5465 _+29, and we have two overlapping holes per disk. As shown in 
Appendix B, the overlapping holes are directly related to the corners of the 
Voronoi-Dirichlet tessellation. This connection leads to the topological 
constraint that for any random disk packing the number of holes per disk 
is exactly 2. 

The total area of the overlapping holes is A oL, = 0.439-t-0.004. The 
mean relative area of an overlapping hole is then 8.034-10 -5, giving a 
mean hole diameter dh/d= 0.63. This value is very close to the maximum of 
the distribution in Fig. 7. 

The distribution of the nonoverlapping holes consists of two parts 
with a change in behavior due to the decimation of overlapping holes 
around the most probable value dh/d=0.4. Holes with diameter dh/d< 
(xf i~  - 3)/4 = 0.2808 cannot overlap any other hole and thus are unaffected 
by the decimation procedure. Thus the initial part of the distribution 
follows the parabola in Fig. 7. The reason why the distributions in Figs. 7 
and 8 have nearly the same limiting value at dh/d= 1 is due to our 
procedure of making the nonoverlapping holes. 

The nonoverlapping holes have a mean area of ANOH=0.231 __+0.002, 
and there are 1.2 nonoverlapping holes perdisk. The mean relative area of a 
nonoverlapping hole is 7.039.10 5, giving a mean-hole diameter of 
dh/d= 0.59. This is nearly the same mean as for the overlapping holes, but 
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Fig. 10. The largest hole defined by three disks with two points in contact, or the smallest 
unstable hole: dh/d = (sin ~/4)-  1 - -  1 ~ 0.414. 

it is considerably different from the most probable value in Fig. 8. The 
largest hole defined by three disks with two points in contact--Fig. 10~has 
a diameter dh/d= (sin 7z/4) - 1 -  1 =0.414. This value is very close to the 
most probable value of the nonoverlapping holes. 

The hole shown in Fig. 10 is on the borderline between what we call 
stable and unstable holes. If a hole has its center inside the triangle defined 
by the centers of the disks defining the hole, it is stable; otherwise it is 
unstable. A hole is stable in the sense that a translation of the hole will 
result in overlap with disks unless the hole diameter is reduced. We expect 
the notion of stable holes to be important in multiphase fluid displacement 
in porous media where surface tension effects tend to trap one phase in the 
pores. 

The size distributions of stable holes are shown in Fig. 11. The size dis- 
tribution of the stable overlapping holes consists of two regions. Since any 
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Fig. 11. Size-distribution of holes: C), all overlapping holes. + ,  stable overlapping holes. ~ ,  
stable nonoverlapping holes, This distribution is indistinguishable from that in Fig. 8. 
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hole smaller than dh/d=0.4 is stable, they are not affected by the 
requirement of stability and thus the shape of the distribution for dh/d< 0.4 
is unchanged. 

Statistically we cannot distinguish the stable nonoverlapping holes 
from all the nonoverlapping holes. Thus our procedure of deleting overlap- 
ping holes in addition deletes most of the unstable holes in the RSA con- 
figuration. Also a local configuration similar to that in Fig. 10 has a high 
probability. 

5. T H E  R A D I A L  D I S T R I B U T I O N  F U N C T I O N  

The probability density p(r) for finding another disk at a distance 
between r and r + dr, given a disk at the origin, is called the radial dis- 
tribution function or the radial pair-correlation function. The radial dis- 
tribution function is central in experimental applications of geometrical 
concepts to physical systems, since it defines the scattering function 
measured in light-, X ray-, and neutron-diffraction experiments. For point 
particles distributed randomly on a surface with an average number density 
of ~ particles per unit area, the radial distribution function follows directly 
from the fact that the expected number of particles in an annulus of area 
2z~r dr is just the area of the element times r~ 

Pran(r) = 21rrfi (18) 

We define the dimensionless pair-correlation function G(r) for the RSA 
configuration by 

G(r) = p(r)/pran(r ) (19) 

which is normalized so that G(r) --* 1 when r ~ oo. In Fig. 12 we have plot- 
ted G(r) for the RSA configuration. We see that G(r) has a divergence at 
contact, and also that it is strongly damped so that the RSA configuration 
looks random (i.e., G(r )=  1) for r/d>2.5. 

The divergence of G(r) at r = d is logarithmic. (6-8) The insert in Fig. 12 
shows G(r) plotted against In(r /d-1)  for r/d< 1.3. We do not see the 
asymptotic behavior over more than 1.5 decades due to the low statistics at 
small distances. A least-squares-fit in the range 1.008 < r/d< 1.18 gives 

G(r) = -(1.19 + 0.1 ) In [(r/d) - 1 ] + ".. (20) 

The uncertainty is estimated by varying the range of the fit of r/d down to 
1.0001. 

In Appendix A we show that the general form of G(r) is 

(D + 1) T o 1 
G(r)=  D2O_ , ~OD(~176 l n [ ( r / d ) - l ] +  "" (21) 

822/44/5-6-7 
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Fig. 12. The radial distribution function G(r) for disks of diameter d as a function of disk 
separation r for RSA configurations at the jamming limit 02=0.547. The insert shows a 
semilogarithmic plot of the divergence in the pair-correlation function near contact. The line is 
a least-squares-fit of the data points to a straight line. 

where P(dh)  is the hole-size distribution defined in the previous section. 
This equation is correct in one dimension, eqs. (9) and (12). From 
our two-dimensional simulations, eq.(21) gives G(r) = (1.18 +__ 0.06) 
l n ( r / d - 1 )  + "' ", in good agreement with the result (20). 

6. T H E  V O R O N O I - D I R I C H L E T  D I V I S I O N  OF S P A C E  

To each disk configuration there is a conjugate Voronoi-Dirichlet 
(VD) division of space--see Figs. 13 and 14. This division is defined as 
follows. Around every disk center we find the set of points closer to this 
disk center than to any other disk center. These sets define the interior of 
convex polygons. By definition each VD cell contains one and only one 
disk. In a close packed configuration the VD tessellation consist of regular 
hexagons. In a random configuration we find different types of polygons. 
The statistics of these polygons is one of the few tools we have in charac- 
terizing a random geometry. 

There are several topological constraints on a VD network, and 
therefore also on the disk configuration defining it. In two-dimensions these 
constraints are relatively strong. In Appendix B we show that topology 
requires the average number of edges per polygon to be precisely six for 
any network in which three edges meet at a corner. In Table II we have 
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The figure shows a VD division of space for the RSA configuration in Fig. 4. (The 
central square is magnified in Fig. 14.) 

Fig. 13. 

Fig. 14. A magnification of the central part in Figs. 4, 7, and 13 showing the connection 
between overlapping holes and VD vertices. Some indirect neighbor pairs are shown and the 
corresponding unstable holes are hatched. The numbers are the number of edges on the 
hatched polygons. 
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Table II. The Frequencies of 
VD Polygons Occurring in 

the RSA Configuration. 

No. of edges % 

3 0.0 
4 1.115 
5 24.428 
6 50.413 
7 21.598 
8 2.396 
9 0.048 

10 0.001 
ii 0.0 

Total 99.999 

summarized the frequencies of the different VD polygons occurring in the 
RSA configuration. We see that only 50 % of the cells have 6 edges, but the 
average number of edges is 5.999. Some of these different polygons are 
hatched in Fig. 14. 

In Fig. 15 we have plotted the distribution function for the area, the 
circumference, the side length, and the vertex angles of the VD polygons of 
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the RSA configurations. The left vertical straight line in these figures is the 
place of the d-function peak in the corresponding distribution for a close- 
packed configuration. The right vertical straight line is the position of the 
d-function peaks for a triangular lattice at the same coverage 0 = 0.547 as 
the RSA configuration. Of course, for the angle distribution these two d- 
function peaks coalesce. All distributions in this section are probability 
densities normalized so that the total area under each curve is equal to 
unity. 

The VD froth can be used to define what we mean by neighboring 
disks. Those disks that share a common side in the respective VD 
polygons, are called geometrical neighbors or a contiguous pair. (18) The 
number of geometrical neighbors--the contiguity number(iS)--is the analog 
of the coordination number in a crystalline structure. Notice that this 
definition of a neighbor does not always give the nearest neighbor as a 
result for a crystalline arrangement. In Fig. 16 we show the probability dis- 
tributions for finding the nth geometrical neighbor disk a distance x/d away 
from a given disk (for n = 1-6). All these six distributions would collapse in 
to a single d-function peak for a triangular lattice. The probability dis- 
tribution for the 5th and 6th nearest geometrical neighbors are derived 
from those disks with a contiguity number greater or equal to 5 and 6, 
respectively. Since the jammed configuration is reached, all distributions 
must be zero for x/d >/2. If this had not been the case, one vertex would be 
at a distance greater than a disk radius from the three disks defining it, and 
then there would be room for one more disk. This is why the asymmetry of 
the distributions shifts from having a steep rise near x/d = 1 for the nearest 
neighbors toward having a steep fall near x /d=2  for the 6th nearest 
geometrical neighbor (and an even steeper fall for the 7th and 8th neighbor 
not shown in Fig. 16). Notice that the distribution of finding the nearest 
geometrical neighbor a distance x/d away is not peaked but has a 
logarithmic divergence at contact as the insert in the top figure in Fig. 16 
shows. This is not surprising since the correlation function (Fig. 12) has a 
logarithmic divergence at contact. The probability distributions of the 
second and third nearest of the geometrical neighbors start out with a 
value greater than zero. So the probability density of finding three disks in 
contact with the same disk is different from zero. 

We can divide the neighbors that the VD polygons define into direct 
or indirect neighbors, depending on whether or not the line joining the 
neighboring disk centers intersects their common side. In the RSA con- 
figurations 89.9 % of the neighbors are direct neighbors. As explained in 
Appendix B, there is one overlapping hole at each VD vertex and there is a 
one-to-one correspondence between stable and unstable holes and direct and 
indirect neighbors. This shows that our circular holes and the VD division 
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of space are two aspects of the same thing. Both these correspondences are 
shown in Fig. 14. We believe that this identification may be of importance 
in understanding how flow properties are influenced by the pore-size dis- 
tribution. If fluid flows in the space between the disks, the flow pattern is 
influenced by the pore necks or the distance between the direct neighboring 
disk pairs. With the identification we have established between direct 
neighbors and the stable holes, it may be possible to find out how the 
properties of the stable holes influence the flow pattern. 

In Fig. 17 the probability density of finding the distance x/d between 
two disk centers defining an edge in a VD polygon, i.e., the distance 
between a geometrical neighbor pair, is plotted. This plot is in a sense the 
average of the distributions of neighboring disks in Fig. 16. Again we have 
a logarithmic divergence at zero resulting from the divergence of the pair- 
correlation function. Then the curve has a flat plateau before it changes 
behavior at x/d,.~ 1.65. At this point it decreases more or less linearly until 
it reaches zero at x/d = 2. In the same figure we have also plotted the dis- 
tance distribution between the direct neighbors only. This distribution do 
not have the same long flat plateau, but rather a small crossover region 
between a logarithmic behavior and a linear behavior. 

In Fig. 18 we have plotted the distribution of the diameter x of the 
largest circle we can place in a VD polygon. This is a measure of the size of 
VD polygons and gives some additional information about the shape of the 
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VD polygons. The rather large value at x/d-- 1 implies that in many of the 
VD polygons the disk we have placed is in fact the largest we can place in 
that polygon. 

7. S U M M A R Y  

The main purpose of this paper was to investigate the geometrical 
properties of the two-dimensional RSA configuration. We simulated the 
one-dimensional problem to get an estimate of the computing accuracy in 
our two-dimensional simulations. In order to characterize the RSA con- 
figuration, we studied the statistical properties of the VD tessellation. To be 
able to give a pore-size distribution of the RSA configuration, we 
introduced the concept of circular holes. We identified the centers of these 
holes with the vertices of the VD network. This identification implies that 
the notion of stable/unstable holes are related to direct/indirect geometrical 
neighbors. The hole-size distribution for all overlapping holes was found to 
be a parabola. From our simulations we obtained a surface coverage at 
jamming in agreement with earlier works, and we found the correct 
asymptotic behavior of 02(z) and G(r)--first seen in simulations by 
Feder (6) and explained by Pomeau (7) and Swendsen. (8) In addition we 
found general relations for the amplitudes of the asymptotic behavior of 
02(z) and G(r). These relations connect the surface coverage, the radial dis- 
tribution function, and the hole-size distribution function. 
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APPENDIXA:  ASYMPTOTIC BEHAVIOR OF 
G(r) AND 0(T) 

Both the logarithmic divergence of the correlation function G(r) and 
the asymptotic saturation of the surface coverage OD(Z) were explained by 
Pomeau (7) and Swendsen/s) Here we extend their arguments and obtain 
the rate of divergence of the correlation function, eq. (3) and the 
asymptotic form for the coverage, eq. (4). We now discuss D = 2, and we 
compare our results with the exact D = 1 results, but our results are valid 
in any dimension D. 

Asymptotic Behavior of 0(z) 

If we draw a circle with radius twice the disk radius around a disk cen- 
ter, we obtain the area excluded by this disk. At time z in the RSA process 
the area not excluded by any disk is the total target area for the center of 
the next disk to be adsorbed. In the beginning of the process the total 
target area will have a complex topology, but after a characteristic time 
~*~> 1, the target area will consist almost exclusively of simple isolated 
target areas of the type illustrated in Fig. 19 with room for only one disk 

f f ~  
\ 

\\ ~ / J  ,]/'----\ 

/l 

Fig. 19. Three disks defining a target area of size h in two dimensions. 
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each. In our D = 2 simulations the characteristic time r* is of the order of 
100. At this stage in the process most of the targets will be defined by three 
disks, as illustrated in Fig. 19, but there are also many small targets defined 
by four disks. 

Let us look at the RSA process of placing disks of area a on a target 
area d >> a. Let the disks adsorbed in targets like the one in Fig. 19 with 
room for only one disk be colored red and the disks adsorbed in bigger 
targets be colored blue. Since each target is hit with a rate proportional to 
its area, the process of placing the blue disks will die out exponentially. So 
for times ~ ~> r* most of the disks adsorbed are red. At time v = oo the jam- 
ming limit is reached and we have a configuration of red and blue disks 
with coverage 0z~ = Nda/d,  where Nd is the total number of red and blue 
disks adsorbed. The total number of red disks only we call _Nr~d, and their 
contribution to the coverage is 0red----Nreda/d. It is the contribution from 
these red disks to the correlation function that gives rise to the logarithmic 
divergence, as we see in the next section. 

First we describe the asymptotic behavior at large times of the 
coverage 0o(v) in the RSA process. We therefore invent a process that 
focuses directly on this asymptotic behavior. Imagine that we remove all 
the red disks from our jammed configuration. We are then left with a con- 
figuration consisting of only isolated targets like the one shown in Fig. 19. 
The time r is reset to zero and we study the RSA process of adsorbing 
(the red) disks starting with this initial configuration. This process will 
behave as the asymptotic behavior in the real RSA process. 

A target in this initial configuration will be characterized by a length 
scale h and a set of angles q~. The area of such a target can be written in the 
form 

v = h D f D ( ~ )  (22) 

Let n,(v;'c) be the number density of targets with area in the range 
(v, v+dv) at time ~ in this process. Clearly Nr~d =fdv  nt(v;r=O). We 
throw disks at a constant rate, and with the definition of the time scale 
used the number of attempts to place a disk is i =  rd/a.  The adsorption 
process satisfies the equation 

with the solution 

(d/dr) nt(v; r) = -(v/a) n,(v; "c ) (23) 

n,(v; r) = nt(v; r = 0) e-~/~ (24) 

At z = 0, the probability of finding a target with a length scale in the inter- 
val (h,h+dh) and the angles in (qs, ~+dqS)  is dhdqaP(h, q~). The 
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probability of finding a target of volume v in the range (v, v+ dr) is 
therefore given by eq. (22) 

do P(v) :dl) L p(1/D)- 1 f dcI)fD1/D(qS) P(h, ~) (25) 
D 

Since the disks are placed at random on the surface with uniformity in any 
given direction, the probability P(h, q~) must be smooth at h = 0 .  The 
targets we focus on are so small that we can write 

P(v) = ( l /D) v (1/D) 1(l/d) A D (26) 

where we have introduced a dimensionless geometrical quantity 

A D = d f d(b fD t/D(~) P(h = 0, q~) (27) 

d is the disk diameter. By use of eq. (24) we find the total number of holes 
at time ~ is 

~max 
N t ( ' c  ) = d v  NredP(V) e - w / a  (28) 

Because of the exponential decay we may take the upper limit to infinity 
with a small error. If we insert eq. (26) we obtain 

N,(z) = Nred(1/D) F( 1/D )(1/d) A D(,/a) - 1/o (29) 

where F is the gamma function, so that F(1/D)=x/-~ for D = 2 .  For each 
target that gets occupied, the coverage will increase with aid.  Thus the 
coverage is given by 

a 
Oo( ~ ) - OD(~) = -'~ N,(,) 

where we have made use of the fact that 

o 

al/D-~- 2 [ ~ 2 +  1 d (31) 

Equation (30) is the correct asymptotic behavior of the RSA process. In 
one dimension where we do not have any angles, we get 

0 t ( ~ ) - -  01(r) = dOroaP(h = 0) 1/x (32) 
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where d is now the length of one line segment.  C o m p a r i n g  this result with 
the exact asympto t ic  results in eq. (10) we see that  

dOredP(h = O) = e -2~ = dOl(oe ) p ( x  = d) (33) 

We explain this identification in the next section. 

Asympto t ic  Behavior  of  G(r) 

Consider  the radial  corre la t ion function G(r)  defined in Section 5. If a 
disk is placed on a target  (h, 05) as i l lustrated in Fig. 20, it will make  
D + 1 = 3 contr ibut ions  to G(r);  but, averaged over  all targets, we get the 
same cont r ibut ion  f rom each of disks 1, 2, and 3. We therefore focus on the 
cont r ibut ion  f rom just  one of the disks, say 3. Let P ( z l h ,  05)dz  be the 
probabi l i ty  that  a new disk center  is placed in a range dz at a distance d + z 
f rom disk 3, given that  disks I, 2, and 3 define a target  (h, 05). We now 
approx ima te  the target  simplex in Fig. 20 by a triangle with height h and 
base angles 05 = (~01, (P2); see Fig. 21. In  the r a n d o m  sequential  adsorp t ion  
process disks are placed at r a n d o m  and the posi t ion of a new disk over  any 
given interval  is uniformly distributed. Therefore,  the probabi l i ty  that  a 
disk is placed in the area element dA defined in Fig. 21 is given by 

dA = (h - z )  g(05) dz  (34) 

where 

E ' ]  = + ( 3 5 )  g(05) tan q)l tan ~o 2 

~1 x J  / 

7 . /  \ 

Fig. 20. The target area defined by the disks 1, 2, and 3 in Fig. 19, enlarged. To calculate the 
radial correlation function G(d+ z), we must first find the conditional probability that a disk 
is placed a distance d+z  from disk 3. 
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Fig. 21. 

Z///•dA= (h-z)g(O)dz 

h i" 

The target (h, ~b) in Fig. 20 is approximated by a triangle with height h and base 
angles q01 and ~02. 

Consequently we find that the probability density P(zLh, q~) is given by 

P(zlh,  cb) ~ (h - z) g(~)  (36) 

Since exactly one disk is placed on the target before the jamming limit is 
reached, we have the normalization condition 

1 = dzP(z]h, ~)  (37) 

This condition with eq. (36) then gives the explicit form for the conditional 
probability density 

P(z]h, ~ ) = D h - D ( h - z )  D 1 (38) 

Although derived for D = 2, this expression is also valid for any dimension 
D. Note that the angle-dependent part g(OS) has dropped out of the final 
expression. 

The change in the radial distribution function obtained by adding all 
the red disks to the configuration of blue disks is 

2 V hmax 
A p ( d + z ) = - ~ a ( D + l  ) -~ dhdcbP(zlh,  qS)P(h,~)Nred (39) 

Factor 2 is due to the fact that if we measure the radial distribution 
function by placing each disk at the origin and then count the number of 
times we find another disk a distance d +  z from the origin, we will count 
every occurrence twice. The denominator Nu is the total number of 
measurements done. Also in this equation we make use of the fact that 
P(h, ~ )  ,.~ P(h = O, ~). 

The dimensionless correlation function G(d+z)  defined in eq. (19) is 
changed by 

Ap(d+ z) 
A a ( d +  z) = (.2D(d + z) D 1 ~i (40) 
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In this equation (2 D is the total solid angle in D dimensions and ~ = Nd/.yJ 
is the number density of particles. From eqs. (38) and (39) we see the 
origin of the divergence in AG(d+ z). The leading behavior (and the exact 
behavior in D = 1) for the probability of placing disks in the interval dz a 
distance d +  z from the origin, is inversely proportional to the size h of the 
target. Therefore, the leading contributions to AG(d+ z) for a given z are 
from the smallest possible targets bigger than z. 

We can now express the full correlation function G(d+z) as 
G(d+z) =AG(d+z)+  (regular part). Inserting eq. (38) in (39) and focus- 
ing on the lower limit in the integration for small z, we finally get 

D + I  z 

G ( d + z ) :  2D_lo., "'" (41) 

BD=d~dqbP(h=O, q5 ) is a new dimensionless geometrical quantity. 
Equation (41) is verified by the results of our simulations in Fig. 12. 

In one dimension, we can compare eq. (41) with the exact expression 
for the asymptotic limit in eq. (12) and again recover eq. (33). Our 
asymptotic arguments are therefore consistent with the exact one-dimen- 
sional results. 

Both rates in eqs. (30) and (41) depend on the arbitrary definition of 
red and blue disks. If we color all disks placed in a triangular target with a 
scale less than h red and the rest blue, we can choose the scale h arbitrary. 
The correct asymptotic rates cannot have this arbitrariness. We therefore 
want to find expressions that are exact. We define pblue(d+x) as the 
probability density of finding a circular hole with diameter d + x. Each hole 
is centered on a vertex of the VD network, and there are T D vertices per 
disk. Since a hole bigger than a disk in the blue configuration is also a 
target area for a red disk, we must have that 

TDNb~u~Pb~u~(d + h) = Nr~d f dq~ P(h, qb) (42) 

The asymptotic behavior comes from the limit h ~ 0. We may therefore 
take this limit in the definition of the red disks. This means that Nred ~ 0 or 
Nblue  ~ N d in such a way that eq. (42) still holds. In the asymptotic limit 
we must have Or~dBD = OD dp(dh = d), where dp(dh)= P(dh) is the hole-size 
distribution for the jammed configuration defined in Section 4. The correct 
rate for the correlation function is therefore 

G(d + z)= (D + I ~_D z 
D2D dp(dh = d) In ~ + -.- (43) 
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The rate of saturation can be written 

OD(O0)-- OD(Z) = (TD/D) OD(O0) KD dp(dh = d) ~-I/D + ... (44) 

where KD is a geometrical constant given by 

4 (-;)[ (~ )1 K ~ =  F F -~+1  p(dh-_=d)fd~f~/D(cp)p(dh=d,q~) 

1 
= F dp(dh=d) f dqS \fo(~b)} p(dh=d, qS) (45) 

p(dh, q~) is the angle-dependent, hole-size distribution for the jammed RSA 
configuration at its upper cutoff value. In one dimension, where we do not 
have any angle integration, K 1 = 1. This explains the identification in 
equation (33). In two dimensions our numerical simulations seem to 
suggest that K2 = 1 also. We have not found an explanation for this fact 
yet. 

A P P E N D I X  B: T O P O L O G I C A L  C O N S T R A I N T S  FOR 
A TESSELLATION 

For the sake of completeness we discuss here some of the well-known 
topological constraints existing in a general tessellation of space, and find 
the value of the topological number TD entering eqs. (3) and (4) in two and 
three dimensions. To is defined as the number of vertices per disk in a VD 
network. In one dimension TI is trivially 1. At the end of this appendix we 
make a comment on the new result that the VD vertices and holes are 
closely related. 

The starting point for the discussion is a theorem by Euler called the 
Euler-Poincar6 theorem. In two dimensions this theorem states that 

V - E + F =  1 (46) 

V is the number of vertices in a general division of space, E is the number 
of edges or links, and F is the number of faces. Equation (46) is true for 
any polygon assembly in two dimensions. In our case, the number of faces 
equals the number of disks in a configuration. The proof of this equation is 
simple in two dimensions. Following Coxeter, (19) we start with a graph 
consisting of one vertex only. From this starting point we want to construct 
any given connected polygon assembly. In Fig. 22 we show the only two 
possibilities that can occur in this construction. Either we can include a 
new vertex, thus creating a new edge also, or we can put an edge between 
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/ 

Fig. 22. The two different steps in constructing a tessellation. 

two already existing vertices, giving a new edge and a new face. In both 
cases we see that V - E +  F =  constant. The constant in this expression is 
given from the initial condition with one vertex and depends on the 
topology of the space. On a sphere it is 2, on a plane it is 1, and on a torus 
it is 0. 

It is also easy to see that a vertex where four edges meet splits into two 
vertices with three edges meeting, as indicated in Fig. 23 by an infinitesimal 
shift of the disks defining the VD vertex. In any random array without any 
special symmetry, the situation where four edges meet is therefore 
extremely rare. We thus conclude that exactly three edges meet in a vertex. 
Since each edge has two endpoints, it follows that 

3 V = 2E (47) 

for all two-dimensional configurations without any special symmetry. 
Using eqs. (46) and (47) and the fact that F>> 1 for a big system, we obtain 

V,.~ 2F 
(48) 

E ~ 3 F  

i.e., there are two vertices for each face or disk, and there are three edges or 
links for each disk. This also shows that in two dimension, the topological 

Fig. 23. A vertex where four edges meet splits up in two vertices where three edges meet by 
an infinitesimal change in the disk configuration. 

822/44/5-6-8 
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number T2 = 2. We now let Fp denote the number of faces with p sides. 
Since each edge is shared by two neighboring polygons and since there are 
pFp edges belonging to polygons with p sides, we have 

1 
E = -~ Z pFp (49) 

P 

Inserting eqs. (47) and (49) in eq. (46) and making use of the fact that 
F = ~,p Fp, gives 

1 1 
-~ZpFp--~2pFp+2Fp= 1 (50) 

P p P 

From this equation we get a topological constraint for these configurations 

fi=Y'~p pFp=6 (51) 
go 

or, in other words, that the mean number of edges of a polygon is 6. 
To find T3 we must start with a generalization of eq. (46) (18) 

V - E + F - C = I  (52) 

V, E, and F have the same meaning as before, but C is the number of 
cells--three-dimensional objects. By similar reasoning that led to eq. (47), 
one obtains the relations among these numbers for a random network in 
three dimensions (18) 

6V= 3E= f i r =  (ffi/2)c (53) 

Here/5 is the average number of edges per face and f is the average number 
of faces per cell. Using the relations in eq. (53) in eq. (52), solving for f i n  
terms of/~ gives 

12 
f =  ~--~ (54) 

This is a topological constraint in three dimensions and we see that it is 
much weaker than the one in two dimensions---eq. (51). From eqs. (53) 
and (54) we see that 

r3 = - -  (55) 
6-/5  

Empirically, Finney (17) found the value /5= 5.158 +0.002 for a random 
close-packed configuration. Theoretical models of Coxeter (19) for the ran- 
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dora close-packed configurat ion yields values close to this experimental 
value. If  we assume that  this value is the same for the RSA configuration, 
the topological  number  T3 ~ 6 .  But two r a n d o m  configurat ions in three 
dimensions need not  have the same average number  of  sides per face, as 
long as eq. (54) is fulfilled. 

Our  last remark concerns the proper ty  we found in Section 4, namely 
that there are exactly two holes per disk in a r andom configuration. The 
proper ty  that  a hole center is equidistant from three disks, and that the 
hole is not  allowed to overlap any d i sk - - such  that the distance to any 
other  disk from the hole center is greater-- implies  that every overlapping 
hole is a Voronoi -Dir ich le t  vertex and vice versa. Therefore, a hole con- 
figuration and a VD tessellation are closely related. F r o m  eq. (48) we then 
see that V ~  2F  means that there are exactly two overlapping holes for each 
disk in a configuration. 
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